Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Poly[chlorido[μ_4 -2,2'-(2-methyl-1Hbenzimidazol-3-ium-1,3-diyl)diacetato]zinc]

Jia-Qin Liu, Zhen-Jü Jiang, Zhi-Hong Xu and Yan Zhang*

School of Physics and Chemistry, Xihua University, Chengdu 610039, People's Republic of China Correspondence e-mail: liujq67@yahoo.com.cn

Received 11 March 2012; accepted 4 May 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.078; data-to-parameter ratio = 14.6.

The title compound, $[Zn(C_{12}H_{11}N_2O_4)Cl]_n$, contains a centrosymmetric dimetal tetracarboxylate paddle-wheel moiety in which the Zn^{II} atom is square-pyramidally coordinated by four carboxylate O atoms at the basal positions and one Cl⁻ anion at the apical position. Each paddle-wheel unit is joined to four such neighbours through bridging dicarboxylate ligands, producing a two-dimensional undulating layer parallel to $(\overline{1}01)$. Adjacent sheets are stacked in a parallel fashion to form a three-dimensional supramolecular structure which is stabilized by interlayer $\pi - \pi$ interactions between benzene rings, with a centroid–centroid distance of 3.722 Å. The range of Zn-O bond lengths is 2.0440 (17)–2.1256 (15) Å and the Zn-Cl bond length is 2.2622 (6) Å.

Related literature

For background to and potential applications of carboxylatecontaining coordination polymers, see Bourne et al. (2001); Chen et al. (2005); Kitagawa et al. (2004); Li et al. (2012); Xuan et al. (2012).

V = 1214.0 (5) Å³

Experimental

Crystal data

$[Zn(C_{12}H_{11}N_2O_4)Cl]$	
$M_r = 348.05$	
Monoclinic, $P2_1/n$	
a = 7.1285 (17) Å	
b = 13.301 (3) Å	
c = 12.804 (3) Å	
$\beta = 90.540 \ (4)^{\circ}$	

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1998) $T_{\min} = 0.424, \ T_{\max} = 0.508$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.078$ S = 1.072640 reflections

Z = 4Mo $K\alpha$ radiation $\mu = 2.26 \text{ mm}^-$ T = 173 K $0.48 \times 0.32 \times 0.30 \text{ mm}$

6072 measured reflections 2640 independent reflections 2327 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.026$

181 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.45 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.45$ e Å⁻³

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported by the Key Program of Xihua University (grant Nos. E0913305, E0913307).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2452).

References

- Bourne, S. A., Lu, J., Mondal, A., Moulton, B. & Zaworotko, M. J. (2001). Angew. Chem. Int. Ed. 40, 2111-2113.
- Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, B., Ockwig, N. W., Fronczek, F. R., Contreras, D. S. & Yaghi, O. M. (2005). Inorg. Chem. 44, 181-183.
- Kitagawa, S., Kitaura, R. & Noro, S. (2004). Angew. Chem. Int. Ed. 43, 2334-2375
- Li, J.-R., Sculley, J. & Zhou, H.-C. (2012). Chem. Rev. 112, 869-932.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xuan, W., Zhu, C., Liu, Y. & Cui, Y. (2012). Chem. Soc. Rev. 42, 1677-1695.

supplementary materials

Acta Cryst. (2012). E68, m751 [doi:10.1107/S1600536812020077]

Poly[chlorido[µ₄-2,2'-(2-methyl-1*H*-benzimidazol-3-ium-1,3-diyl)diacetato]zinc]

Jia-Qin Liu, Zhen-Jü Jiang, Zhi-Hong Xu and Yan Zhang

Comment

Carboxylate-containing ligands have been intensively investigated to construct metal-organic frameworks with an intriguing variety of topologies and potential applications in gas sorption, separation and/or catalysis (Bourne *et al.*, 2001; Chen *et al.*, 2005; Kitagawa *et al.*, 2004; Li *et al.*, 2012; Xuan *et al.*, 2012). Polycarboxylate ligands with suitable spacers are good choices for such architectures because the topological structures can be adjusted not only by carboxylate groups but also by the organic spacers. Here we use a flexible zwitterionic ligand, 1-acetoxy-2-methylbenzimidazole-3-acetate acid [HL], to prepare the title compound $[Zn(L)Cl]_n$ (I).

The motive consists of a centrosymmetric paddle-wheel dimetal tetracarboxylate moiety $[Zn_2(CO_2)_4]$ (Fig. 1) in which each Zn^{II} is square-pyramidally coordinated by four carboxylate oxygen atoms at the basal position and one Cl⁻ anion at the apical position. Each paddle-wheel unit is bridged by four such neighbors through bridging dicarboxylate ligands, producing a two-dimensional undulate layer in which π - π interactions between phenyl rings of benzimidazole moieties (ring-centroid distance: 3.579 (2) Å) cooperate in the 2-D sheet formation (Fig. 2). Adjacent sheets are stacked in a parallel fashion to form a 3-D supramolecular structure stabilized by interlayer π - π interactions between phenyl rings with a ring-centroid distance of 3.722 (2) Å. The Zn—O span is 2.0440 (17)-2.1256 (15) Å and the Zn—Cl distance is 2.2622 (6) Å.

Experimental

After the pH of an ethanol/water mixture solution (10 ml with ratio of 4:1) containing $ZnCl_2.2H_2O$ (0.0408 g, 0.3 mmol) and the HL ligand (0.0498 g, 0.2 mmol) was adjusted to 7 by addition of triethylamine, the resulting solution was sealed in a Teflon-lined steel bomb (25 ml) and then heated at 140°C for 2 days. Colorless block crystals were collected. Yield: 16%. Elemental analysis (%) calcd for the title compound: C 41.38, H 3.16, N 8.04; found: C 41.24, H 3.23, N 8.47. IR: 1672(*s*), 1472(*m*), 1436(*m*), 1389(*s*), 1310(*m*), 764(*s*), 721(*m*), 619(*m*), 574(*m*).

Refinement

All hydrogen atoms were generated geometrically and refined with a riding model, $U_{iso}(H) = x \times U_{eq}(Host)$ (aromatic: C—H: 0.95Å, x=1.2; methyl, C—H: 0.98Å, x=1.5; methylene, C—H: 0.99Å, x=1.2)

Computing details

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT* (Bruker, 1998); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

Figure 1

ORTEP drawing (at 30% probability) of a paddle-wheel unit in the title compound (symmetry codes: A, -*x*, -*y*, -*z*; B, -0.5 + x, 1.5 - y, -0.5 + z; C, 0.5 - x, -0.5 + y, 1.5 - z). Hydrogen atoms are omitted for clarity.

Figure 2

The 2-D sheet structure parallel to the (-101) plane, hydrogen atoms are omitted for clarity.

Poly[chlorido[µ₄-2,2'-(2-methyl-1*H*-benzimidazol-3-ium- 1,3-diyl)diacetato]zinc]

Crystal data	
$[Zn(C_{12}H_{11}N_2O_4)Cl]$	Z = 4
$M_r = 348.05$	F(000) = 704
Monoclinic, $P2_1/n$	$D_{\rm x} = 1.904 {\rm Mg} {\rm m}^{-3}$
Hall symbol: -P 2yn	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 7.1285 (17) Å	$\theta = 2.2 - 27.1^{\circ}$
b = 13.301 (3) Å	$\mu = 2.26 \text{ mm}^{-1}$
c = 12.804 (3) Å	T = 173 K
$\beta = 90.540 \ (4)^{\circ}$	Block, colorless
V = 1214.0 (5) Å ³	$0.48 \times 0.32 \times 0.30 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector	6072 measured reflections
diffractometer	2640 independent reflections
Radiation source: fine-focus sealed tube	2327 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
ω scans	$\theta_{\rm max} = 27.1^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$
Absorption correction: multi-scan	$h = -9 \longrightarrow 8$
(SADABS; Bruker, 1998)	$k = -11 \rightarrow 17$
$T_{\min} = 0.424, \ T_{\max} = 0.508$	$l = -16 \rightarrow 9$

Refinement

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn1	0.13104 (3)	0.553340 (17)	0.417142 (17)	0.01203 (10)
Cl1	0.29440 (7)	0.65999 (4)	0.31470 (4)	0.01697 (13)
01	0.4360 (2)	0.84000 (11)	0.97522 (12)	0.0181 (3)
O2	0.2502 (2)	0.91230 (12)	1.09352 (13)	0.0217 (4)
O3	0.2669 (2)	0.56544 (13)	0.55787 (12)	0.0241 (4)
O4	0.0830 (2)	0.49535 (12)	0.67900 (12)	0.0203 (3)
N1	0.3143 (2)	0.58092 (13)	0.83280 (13)	0.0122 (3)
N2	0.2081 (2)	0.67202 (13)	0.96116 (14)	0.0131 (4)
C1	0.2938 (3)	0.51606 (15)	0.91696 (16)	0.0123 (4)
C2	0.3314 (3)	0.41392 (16)	0.92770 (17)	0.0164 (4)
H2A	0.3829	0.3755	0.8724	0.020*
C3	0.2899 (3)	0.37134 (16)	1.02313 (18)	0.0190 (5)
H3A	0.3135	0.3018	1.0338	0.023*
C4	0.2140 (3)	0.42806 (17)	1.10429 (18)	0.0190 (5)
H4A	0.1854	0.3957	1.1683	0.023*
C5	0.1792 (3)	0.53041 (16)	1.09412 (16)	0.0157 (4)
H5A	0.1280	0.5689	1.1495	0.019*
C6	0.2235 (3)	0.57346 (15)	0.99858 (16)	0.0133 (4)
C7	0.2610 (3)	0.67345 (15)	0.86146 (16)	0.0128 (4)
C8	0.2578 (3)	0.75932 (16)	0.78819 (17)	0.0197 (5)
H8A	0.2142	0.8196	0.8246	0.030*
H8B	0.1726	0.7443	0.7297	0.030*
H8C	0.3844	0.7709	0.7617	0.030*
С9	0.1487 (3)	0.75902 (15)	1.02331 (17)	0.0159 (4)
H9A	0.1187	0.7357	1.0946	0.019*
H9B	0.0321	0.7867	0.9920	0.019*

C10	0.2944 (3)	0.84401 (15)	1.03157 (16)	0.0136 (4)
C11	0.3852 (3)	0.55606 (16)	0.72945 (16)	0.0142 (4)
H11A	0.4637	0.4948	0.7348	0.017*
H11B	0.4662	0.6116	0.7051	0.017*
C12	0.2295 (3)	0.53811 (15)	0.64823 (17)	0.0138 (4)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.01287 (15)	0.01381 (14)	0.00939 (14)	-0.00070 (8)	-0.00114 (9)	0.00073 (8)
Cl1	0.0203 (3)	0.0164 (2)	0.0142 (2)	-0.00402 (19)	0.00246 (19)	-0.00035 (18)
01	0.0171 (8)	0.0169 (7)	0.0205 (8)	-0.0037 (6)	0.0038 (6)	-0.0020 (6)
O2	0.0251 (9)	0.0166 (7)	0.0235 (8)	-0.0044 (6)	0.0047 (7)	-0.0089 (7)
03	0.0191 (8)	0.0415 (10)	0.0114 (8)	-0.0005 (7)	-0.0032 (6)	0.0026 (7)
O4	0.0199 (8)	0.0227 (8)	0.0181 (8)	-0.0067 (7)	-0.0050 (6)	-0.0012 (6)
N1	0.0123 (8)	0.0143 (8)	0.0100 (8)	-0.0009 (7)	-0.0026 (6)	-0.0012 (7)
N2	0.0136 (9)	0.0126 (8)	0.0130 (8)	-0.0012 (7)	-0.0004 (7)	-0.0009 (7)
C1	0.0113 (10)	0.0153 (10)	0.0102 (9)	-0.0027 (8)	-0.0039 (7)	-0.0003 (8)
C2	0.0161 (10)	0.0153 (10)	0.0176 (10)	0.0004 (8)	-0.0048 (8)	-0.0025 (8)
C3	0.0172 (11)	0.0136 (10)	0.0261 (12)	-0.0031 (8)	-0.0065 (9)	0.0049 (9)
C4	0.0170 (11)	0.0222 (11)	0.0178 (11)	-0.0050 (9)	-0.0047 (8)	0.0066 (9)
C5	0.0153 (10)	0.0206 (10)	0.0112 (10)	-0.0045 (8)	-0.0019 (8)	-0.0014 (8)
C6	0.0117 (9)	0.0136 (9)	0.0145 (10)	-0.0035 (8)	-0.0032 (8)	-0.0012 (8)
C7	0.0110 (9)	0.0150 (10)	0.0121 (9)	-0.0027 (8)	-0.0038 (7)	-0.0015 (8)
C8	0.0264 (12)	0.0172 (10)	0.0154 (10)	0.0003 (9)	-0.0016 (9)	0.0030 (9)
C9	0.0154 (10)	0.0131 (10)	0.0191 (10)	-0.0007 (8)	0.0028 (8)	-0.0055 (8)
C10	0.0152 (10)	0.0131 (9)	0.0126 (9)	-0.0012 (8)	-0.0025 (8)	-0.0003 (8)
C11	0.0134 (10)	0.0198 (11)	0.0093 (9)	0.0010 (8)	-0.0014 (8)	-0.0014 (8)
C12	0.0142 (10)	0.0150 (10)	0.0121 (9)	0.0045 (8)	-0.0034 (8)	-0.0034 (8)

Geometric parameters (Å, °)

7n1 02	2 0440 (17)	С2 Ц2А	0.0500
2111-03	2.0440 (17)	C2—H2A	0.9300
Zn1—O4 ¹	2.0559 (16)	C3—C4	1.397 (3)
Zn1—O2 ⁱⁱ	2.0632 (16)	С3—НЗА	0.9500
Zn1—O1 ⁱⁱⁱ	2.1256 (15)	C4—C5	1.390 (3)
Zn1—Cl1	2.2622 (6)	C4—H4A	0.9500
O1-C10	1.247 (3)	C5—C6	1.390 (3)
O2—C10	1.248 (3)	С5—Н5А	0.9500
O3—C12	1.244 (3)	С7—С8	1.478 (3)
O4—C12	1.256 (3)	C8—H8A	0.9800
N1—C7	1.340 (3)	C8—H8B	0.9800
N1-C1	1.389 (3)	C8—H8C	0.9800
N1-C11	1.459 (3)	C9—C10	1.538 (3)
N2—C7	1.335 (3)	С9—Н9А	0.9900
N2—C6	1.400 (3)	С9—Н9В	0.9900
N2—C9	1.469 (3)	C11—C12	1.532 (3)
C1—C2	1.391 (3)	C11—H11A	0.9900
C1—C6	1.392 (3)	C11—H11B	0.9900
C2—C3	1.381 (3)		

$O3$ — $Zn1$ — $O4^{i}$	153.56 (7)	С6—С5—Н5А	121.8
O3—Zn1—O2 ⁱⁱ	86.48 (7)	С4—С5—Н5А	121.8
$O4^{i}$ —Zn1— $O2^{ii}$	88.65 (7)	C5—C6—C1	121.4 (2)
O3—Zn1—O1 ⁱⁱⁱ	86.86 (7)	C5—C6—N2	132.0 (2)
O4 ⁱ —Zn1—O1 ⁱⁱⁱ	86.31 (7)	C1—C6—N2	106.52 (18)
O2 ⁱⁱ —Zn1—O1 ⁱⁱⁱ	154.17 (6)	N2—C7—N1	109.40 (18)
O3—Zn1—Cl1	102.68 (5)	N2—C7—C8	127.98 (19)
O4 ⁱ —Zn1—Cl1	103.50 (5)	N1—C7—C8	122.58 (19)
O2 ⁱⁱ —Zn1—Cl1	108.55 (5)	С7—С8—Н8А	109.5
O1 ⁱⁱⁱ —Zn1—Cl1	97.25 (5)	С7—С8—Н8В	109.5
C10-01-Zn1 ^{iv}	135.18 (14)	H8A—C8—H8B	109.5
C10—O2—Zn1 ^v	120.91 (14)	С7—С8—Н8С	109.5
C12—O3—Zn1	133.86 (15)	H8A—C8—H8C	109.5
C12—O4—Zn1 ⁱ	124.71 (14)	H8B—C8—H8C	109.5
C7—N1—C1	109.00 (17)	N2-C9-C10	114.73 (17)
C7—N1—C11	123.92 (17)	N2—C9—H9A	108.6
C1—N1—C11	127.07 (18)	С10—С9—Н9А	108.6
C7—N2—C6	108.60 (17)	N2—C9—H9B	108.6
C7—N2—C9	126.32 (18)	С10—С9—Н9В	108.6
C6—N2—C9	125.06 (18)	H9A—C9—H9B	107.6
N1—C1—C2	131.4 (2)	O1—C10—O2	127.5 (2)
N1—C1—C6	106.45 (18)	O1—C10—C9	118.58 (18)
C2—C1—C6	122.14 (19)	O2—C10—C9	113.85 (18)
C3—C2—C1	116.4 (2)	N1-C11-C12	113.33 (17)
C3—C2—H2A	121.8	N1—C11—H11A	108.9
C1—C2—H2A	121.8	C12—C11—H11A	108.9
C2—C3—C4	121.6 (2)	N1—C11—H11B	108.9
С2—С3—НЗА	119.2	C12-C11-H11B	108.9
C4—C3—H3A	119.2	H11A—C11—H11B	107.7
C5—C4—C3	122.0 (2)	O3—C12—O4	127.6 (2)
C5—C4—H4A	119.0	O3—C12—C11	115.17 (19)
C3—C4—H4A	119.0	O4—C12—C11	117.18 (19)
C6—C5—C4	116.4 (2)		

Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1/2, y-1/2, -z+3/2; (iii) x-1/2, -y+3/2, z-1/2; (iv) x+1/2, -y+3/2, z+1/2; (v) -x+1/2, y+1/2, -z+3/2.